ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
Yousry Gohar, Shi-Tien Yang
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2010-2020
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24576
Articles are hosted by Taylor and Francis Online.
The Blanket Comparison and Selection Study (BCSS) carried out 16 blanket concepts [7 tokamaks and 9 tandem mirror reactors (TMRs)] for the final evaluation process. This process requires all the blanket design parameters, including the energy multiplication factors, the atomic displacement rate in the first wall, and the shielding definition for the reactor. A shielding assessment is performed to determine shielding materials, compositions, arrangements, and thicknesses for each concept. Two shielding criteria are adopted for this assessment: (a) workers are permitted in the reactor hall 1 day after shutdown, and (b) superconductor coils are required to function for a 150 MW·yr/m2 deuterium-tritium neutron exposure at the first wall without a change in their performances. For the design purpose, the occupational exposure is 0.5 mrem/h, based on working 8 h/day and 40 h/week. This dose level is used to concur with current practice in the nuclear industry and the exposure policy of the U.S. Department of Energy, which limits the on-site personnel exposure level to less than one-fifth of the maximum permissible dose equivalent limits. The personnel exposure criterion is used to size the outboard bulk shield for tokamak reactors and the shield thickness between the central cell coils for TMRs. In the fusion power environment the insulator materials are the most sensitive components in the superconductor coils from the radiation damage point of view. A maximum insulator dose of 1010 rad in the thermal insulator is used to size the bulk shield in the inboard section of the tokamak reactors and the central cell sections under the coils for TMRs. As a result of this criterion, all other nuclear responses do not exceed any design limit for the superconductor materials or the copper stabilizer. Also, the nuclear heating in the winding materials is ∼0.1 mW/cm3, which is very close to the optimum design conditions for TMRs and quite satisfactory for the design of the toroidal field coils in tokamak reactors. An analysis for the energy multiplication factors, the energy loss to the shield, the atomic displacement rate in the first wall, and the shield definition for the 16 blanket concepts of the BCSS is provided.