ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
John W. Davis, T. A. Lechtenberg, Dale L. Smith, F. W. Wiffen
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 1927-1943
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24570
Articles are hosted by Taylor and Francis Online.
The Blanket Comparison and Selection Study (BCSS) had as its primary goal the selection of a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. To help provide a common basis for evaluation of all candidate blanket concepts considered by the BCSS, a structural materials data base assessment was performed that included a compilation of available materials properties data, specification of limiting criteria for materials performance, and determination of design allowable parameters. Three classes of alloys are currently considered as leading candidates for the first-wall/blanket structure of a fusion power reactor. For the BCSS, one reference or baseline alloy was selected from each class and one low-activation counterpart to each reference alloy was identified for evaluation. The alloy classes, reference alloys, and low-activation analogs selected were: austenitic stainless steels (primary candidate alloy; manganese-stabilized steel); ferritic or martensitic steels (HT-9, Fe-11 Cr-2.5 W-0.3 V-0.15 C); and vanadium-base alloys (V-15 Cr-5 Ti, reference alloy is low activation). The critical nuclear, thermophysical, and mechanical properties of the three reference alloys were reviewed. Where insufficient data exist for a reliable assessment, best estimates were provided for use in the blanket concepts development. For the low-activation analogs, the same properties as their respective reference alloys were assumed, including radiation damage resistance. The design stress limits, maximum allowable operating temperature, and lifetime were set primarily by radiation damage considerations. Critical design issues associated with each of the reference alloys and low-activation analogs were identified, together with limiting criteria for materials performance.