ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Masahiro Kinoshita, John R. Bartlit, Robert H. Sherman
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 411-422
Technical Paper | Tritium System | doi.org/10.13182/FST85-A24560
Articles are hosted by Taylor and Francis Online.
Useful information is provided for determining the best startup sequence for multiple interlinked distillation columns for hydrogen isotope separation whose required output specifications are very strict. The column cascade developed for the Tritium Systems Test Assembly is chosen as an example. It is shown that the compositions of the gas mixtures charged into the columns have remarkable effects on the startup characteristics and should be carefully prepared. The compositions are determined by considering the inventories of hydrogen, deuterium, and tritium within the columns under full-normal (normal operating) conditions. Two strategies that are expected to present successful startup are found and discussed. One of the strategies is composed of only two operational modes, but has the complexity of charging four separate mixtures of different compositions into the columns. The other strategy avoids such complexity, but comprises seven modes and requires a roughly two times longer startup time. The control of the atomic fraction of tritium in the H2-HD stream conflicts with the purity control for the D2 stream. To assure the high purity of the D2 stream, the atomic fraction of tritium in the H2-HD stream must be decreased to an adequately low value before switching the operation to the full-normal mode.