ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shigeru Tanaka, Masato Akiba, Masanori Araki, Masayuki Dairaku, Hiroshi Horiike, Takao Itoh, Mikito Kawai, Masao Komata, Masaaki Kuriyama, Shigeru Kitamura, Shinzaburo Matsuda, Mamoru Matsuoka, Kiyoshi Mizuhashi, Yutaka Ohuchi, Yoshihiro Ohara, Yoshikazu Okumura, Kiyoshi Shibanuma, Takemasa Shibata, Kazuhiro Watanabe, Russel P. Wells
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 391-398
Technical Paper | Magnet System | doi.org/10.13182/FST85-A24558
Articles are hosted by Taylor and Francis Online.
Influence of the magnetic field, which is produced around the JT-60 tokamak, on the performance of the neutral beam injector was experimentally studied using the stray field simulating coils installed around the prototype injector unit. Temperature distributions on the ion dump shifted vertically and the peak values changed in the presence of the field, as expected from the calculation of ion orbits. The shift length and the peak values remained within the permissible level, however, because of the operation of two cancellation coils, one of which was set around the reflecting magnet and another around the neutralizer magnetic shield. The neutral power injected into the beam target decreased by 4 to 5 % during application of the stray field due to the reionization loss of neutral particles. Under operating conditions, the heat load on each component was below the design value and all the components worked without any problems in the presence of stray magnetic field.