ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
William R. Sutton III, Dieter J. Sigmar+, George H. Miley
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 374-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24557
Articles are hosted by Taylor and Francis Online.
An alpha-driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies several times the alpha gyrorate. A two-dimensional differential quasi-linear diffusion equation is derived in cylindrical υ⊥-υ∥ geometry. The quasi-linear diffusion coefficients in the small parameter k∥/k⊥ are expanded and the problem is reduced to one dimension by integrating out the υ∥ dependence. Reactor relevant information is obtained using data from the one-dimensional formulation in a 1½-dimensional tokamak transport code. Contour plots of the alpha threshold fraction are used to identify the instability regions in the ne-Ti plane. Alpha/background electron fractions as low as 10−6 to 10−4 may trigger the instability. For a typical reactor-size tokamak, an enhancement of the fraction of the alpha energy transferred to ions by as much as 1.5 can occur for Ti = Te at 7 keV. Still, due to the rapid equilibration of electron and ion temperatures, a < 1 to 2% increase in fusion power occurs overall.