ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
William R. Sutton III, Dieter J. Sigmar+, George H. Miley
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 374-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24557
Articles are hosted by Taylor and Francis Online.
An alpha-driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies several times the alpha gyrorate. A two-dimensional differential quasi-linear diffusion equation is derived in cylindrical υ⊥-υ∥ geometry. The quasi-linear diffusion coefficients in the small parameter k∥/k⊥ are expanded and the problem is reduced to one dimension by integrating out the υ∥ dependence. Reactor relevant information is obtained using data from the one-dimensional formulation in a 1½-dimensional tokamak transport code. Contour plots of the alpha threshold fraction are used to identify the instability regions in the ne-Ti plane. Alpha/background electron fractions as low as 10−6 to 10−4 may trigger the instability. For a typical reactor-size tokamak, an enhancement of the fraction of the alpha energy transferred to ions by as much as 1.5 can occur for Ti = Te at 7 keV. Still, due to the rapid equilibration of electron and ion temperatures, a < 1 to 2% increase in fusion power occurs overall.