ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
William R. Sutton III, Dieter J. Sigmar+, George H. Miley
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 374-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24557
Articles are hosted by Taylor and Francis Online.
An alpha-driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies several times the alpha gyrorate. A two-dimensional differential quasi-linear diffusion equation is derived in cylindrical υ⊥-υ∥ geometry. The quasi-linear diffusion coefficients in the small parameter k∥/k⊥ are expanded and the problem is reduced to one dimension by integrating out the υ∥ dependence. Reactor relevant information is obtained using data from the one-dimensional formulation in a 1½-dimensional tokamak transport code. Contour plots of the alpha threshold fraction are used to identify the instability regions in the ne-Ti plane. Alpha/background electron fractions as low as 10−6 to 10−4 may trigger the instability. For a typical reactor-size tokamak, an enhancement of the fraction of the alpha energy transferred to ions by as much as 1.5 can occur for Ti = Te at 7 keV. Still, due to the rapid equilibration of electron and ion temperatures, a < 1 to 2% increase in fusion power occurs overall.