ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Scipione Bobbio, Enzo Coccorese, Giulio Fabricatore, Raffaele Martone, Guglielmo Rubinacci
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 345-360
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24555
Articles are hosted by Taylor and Francis Online.
In the international tokamak reactor (INTOR), the problem of the passive control of the vertical instability is to be solved by means of suitably shaped saddle coils to be embedded in the blanket structure. The efficiency of such a system depends on the characteristics of the passive conductors and on the plasma equilibrium as well as on the type of plasma displacement assumed. To cover the physical uncertainties caused by the model assumptions for the plasma with respect to the motion on a slow time scale (of the order of several tens of milliseconds) corresponding to efficient passive stabilization, four different plasma displacement models are considered and compared with each other. A stability analysis is performed using the energy principle, expressed in circuital form. The results of the INTOR analysis are presented and discussed, showing in particular that under very general conditions the optimum stabilization efficiency is obtained for passive conductors situated at ∼60 deg above and below the horizontal midplane at the outboard side. The effect of the geometric parameters of the saddle coils (e.g., area and shape of the cross section, toroidal segmentation, etc.) on the stabilization efficiency is investigated; a parametric study of these dependences is presented. General conclusions applicable to INTOR are drawn.