ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Glenn Gerdin, Donald Mueller, Bernard W. Wehring
Fusion Science and Technology | Volume 7 | Number 2 | March 1985 | Pages 180-196
Technical Paper | Experimental Device | doi.org/10.13182/FST85-A24533
Articles are hosted by Taylor and Francis Online.
A method is proposed to measure the properties of the alphas escaping a deuterium-tritium-fueled magnetically confined fusion reactor. This method is called the charge neutralization approach; it involves the slowing down of alphas in carbon foils of known thickness so that a significant percentage of the alphas are neutralized. These alphas can be detected by methods similar to those developed for charge-exchange neutral analysis. The foils would be placed in a recessed slot in the foil holder that would, in turn, be placed in the shadow of the limiter to reduce the heat and particle flux to the foils. Considerable energy selection can be achieved by varying the foil thickness; the lower limit on detectable alpha energy is ∼200 keV. The ratio of alpha signal to nuclear noise was estimated for a ZnS scintillator 15 μm thick being operated in the current mode in a borated limestone shield. Experimental values were used for the response to neutrons, and linear absorption coefficients were used for the response to gammas. The alpha wall flux was that calculated for a Tokamak Fusion Test Reactor (TFTR) with Q = 1, a plasma current of 2.5 MA, and a minor radius of 85 cm; the radiation fluxes were scaled from the one-dimensional calculations of L-P. Kufor TFTR at Q = 1. For this example, the signal to nuclear noise ratio becomes greater than unity at ∼75 cm into the shield indicating the amount of shielding material required.