ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hiroshi Horiike, Masato Akiba, Masanori Araki, Masaaki Kuriyama, Shinzaburo Matsuda, Mamoru Matsuoka, Yoshihiro Ohara, Yoshikazu Okumura, Kiyoshi Shibanuma, Shigeru Tanaka
Fusion Science and Technology | Volume 7 | Number 2 | March 1985 | Pages 171-179
Technical Paper | Plasma Heating System | doi.org/10.13182/FST85-A24532
Articles are hosted by Taylor and Francis Online.
Countermeasures against mechanical warpage of the extraction electrode for the JT-60 ion source were studied experimentally. A conventional plasma electrode, consisting of a single thin plate, exhibited unacceptably large deflections during long-pulse operation at extraction power levels exceeding 75 kV, 35 A. To measure the deflection characteristics of this electrode, hot water was circulated in the electrode cooling channels. Results from this test showed that an unacceptably large warpage occurs at temperatures moderately below the operation temperature. To suppress warpage, two modified electrodes were fabricated and tested. In the first design, the electrode was stiffened by adding material at the edges of the aperture area. In the second design, constraints on the thermal expansion of the aperture area were released by segmenting the aperture area and joining them to the stiff electrode frame through a bellows. Both designs successfully reduced electrode deflection and were used to extract 100-kV, 40-A, 10-s beams. These tests provided a measure of the permissible deflection level of the plasma electrode.