ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Hiroshi Horiike, Masato Akiba, Masanori Araki, Masaaki Kuriyama, Shinzaburo Matsuda, Mamoru Matsuoka, Yoshihiro Ohara, Yoshikazu Okumura, Kiyoshi Shibanuma, Shigeru Tanaka
Fusion Science and Technology | Volume 7 | Number 2 | March 1985 | Pages 171-179
Technical Paper | Plasma Heating System | doi.org/10.13182/FST85-A24532
Articles are hosted by Taylor and Francis Online.
Countermeasures against mechanical warpage of the extraction electrode for the JT-60 ion source were studied experimentally. A conventional plasma electrode, consisting of a single thin plate, exhibited unacceptably large deflections during long-pulse operation at extraction power levels exceeding 75 kV, 35 A. To measure the deflection characteristics of this electrode, hot water was circulated in the electrode cooling channels. Results from this test showed that an unacceptably large warpage occurs at temperatures moderately below the operation temperature. To suppress warpage, two modified electrodes were fabricated and tested. In the first design, the electrode was stiffened by adding material at the edges of the aperture area. In the second design, constraints on the thermal expansion of the aperture area were released by segmenting the aperture area and joining them to the stiff electrode frame through a bellows. Both designs successfully reduced electrode deflection and were used to extract 100-kV, 40-A, 10-s beams. These tests provided a measure of the permissible deflection level of the plasma electrode.