ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kohtaro Ueki, Yuichi Ogawa, Hiroshi Naito, Tomonori Hyodo
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 90-98
Technical Paper | Shielding | doi.org/10.13182/FST85-A24521
Articles are hosted by Taylor and Francis Online.
A 14-MeV neutron streaming through a narrow vertical hole duct in the diagnostics room of a Deuterium-Tritium Fusion Experimental Device (R tokamak) was analyzed using the Monte Carlo coupling technique. Neutron dose rate distributions in the horizontal direction as well as in the axial direction along the vertical hole duct were calculated to evaluate the neutron streaming effect through the hole duct. The dose rate distribution in the axial direction undergoes relatively small changes, but the distribution changed abruptly in the horizontal direction. Compared to ANISN results, Monte Carlo calculations show a neutron streaming effect at locations beyond the vertical hole duct axis in the horizontal direction. The fractional standard deviation (FSD) due to error propagation was calculated by the ORION code based on an error propagation equation. The FSDs were within 0.06 at the detector locations along the axial direction along the vertical hole duct; but, they were as much as 0.25 to 0.47 for >15 cm beyond the hole duct axis in the horizontal direction.