ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. Reece Roth
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 78-89
Technical Paper | Fusion Reactor | doi.org/10.13182/FST85-A24520
Articles are hosted by Taylor and Francis Online.
How the plasma stability index beta and the fusion power density influence three performance parameters of fusion reactors burning deuterium-tritium and four advanced fusion fuel cycles was determined. The performance parameters include the total power produced per unit length of the reactor, the mass per unit length, and the specific mass in kilograms per kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of conservative engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, the average blanket mass density, etc. It was found that one should employ an entirely different strategy for the design of an engineering test reactor (ETR), designed to test components under high wall loadings and neutron fluences, than one would employ in designing a power plant reactor intended to produce the cheapest possible thermal power. An ETR should not be merely a scaled-down power plant reactor, but should operate at substantially different values of beta and plasma power density, and in some circumstances even use a different confinement concept and fusion fuel cycle.