ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Ronald D. Boyd
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 7-30
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24515
Articles are hosted by Taylor and Francis Online.
The present understanding of critical heat flux (CHF) in subcooled flow boiling with water is reviewed and fusion reactor component high-heat flux (HHF) requirements are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime. Although not exhaustive, CHF data base parameter ranges are also given as an aid for fusion component designers in locating the appropriate data for an application. Because of the relatively HHF levels and long pulse durations in the next generation reactors, fusion components must be actively cooled. All fusion components are heated nonuniformly over their surface and their surface area ranges from 0.1 to 1000 m2. Although most components are subjected to fluxes from ∼0.005 kW/cm2 (first wall) to near 1 kW/cm2 (limiters and divertors), some components are subjected to fluxes from 2 kW/cm2 (first wall in compact reactors) to 8 kW/cm2 (beam dumps). Subcooled flow boiling has the greatest potential of accommodating the steady-state HHF levels encountered by fusion reactor components. Although the available heat flux data base brackets those for most fusion components, the existing data are sparse or nonexistent for the length-to-diameter ratios (e.g., >200 for limiters and >50 for beam dumps) necessary for future HHF fusion components. There are more than 20 parameters that influence subcooled flow boiling CHF and many other tested techniques that enhance heat transfer by a factor of >2. The engineering implementation and design of fusion components cannot be optimized until the physical relationships between the maximum CHF and both the flow parameters and thermophysical properties have been determined. This can be accomplished only if improvements are made in the understanding of the fundamental mechanisms controlling the heat transfer and CHF in the subcooled flow boiling regime.