ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ronald D. Boyd
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 7-30
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24515
Articles are hosted by Taylor and Francis Online.
The present understanding of critical heat flux (CHF) in subcooled flow boiling with water is reviewed and fusion reactor component high-heat flux (HHF) requirements are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime. Although not exhaustive, CHF data base parameter ranges are also given as an aid for fusion component designers in locating the appropriate data for an application. Because of the relatively HHF levels and long pulse durations in the next generation reactors, fusion components must be actively cooled. All fusion components are heated nonuniformly over their surface and their surface area ranges from 0.1 to 1000 m2. Although most components are subjected to fluxes from ∼0.005 kW/cm2 (first wall) to near 1 kW/cm2 (limiters and divertors), some components are subjected to fluxes from 2 kW/cm2 (first wall in compact reactors) to 8 kW/cm2 (beam dumps). Subcooled flow boiling has the greatest potential of accommodating the steady-state HHF levels encountered by fusion reactor components. Although the available heat flux data base brackets those for most fusion components, the existing data are sparse or nonexistent for the length-to-diameter ratios (e.g., >200 for limiters and >50 for beam dumps) necessary for future HHF fusion components. There are more than 20 parameters that influence subcooled flow boiling CHF and many other tested techniques that enhance heat transfer by a factor of >2. The engineering implementation and design of fusion components cannot be optimized until the physical relationships between the maximum CHF and both the flow parameters and thermophysical properties have been determined. This can be accomplished only if improvements are made in the understanding of the fundamental mechanisms controlling the heat transfer and CHF in the subcooled flow boiling regime.