ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Moriyama, T. Fujii, H. Kimura, K. Anno, K. Yokokura, S. Shinozaki, M. Terakado, S. Hiranai
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 467-481
Technical Paper | doi.org/10.13182/FST02-A241
Articles are hosted by Taylor and Francis Online.
Research and developments on the ion cyclotron range of frequency (ICRF) heating system in the JT-60 upgrade (JT-60U) are presented. The developments and experiences on the operation of the ICRF heating system contribute to its upgrade and to future ICRF heating systems in ITER. The ICRF heating system for JT-60U started operation in January 1992. RF power up to 7 MW for 1.1 sec at 116 MHz has been coupled to a plasma as a result of the developments described in this paper. New high power tetrodes having pyrolitic graphite grids for higher dissipation of screen and control grids were tested in the ICRF amplifier, and 1.7 MW of the output power at 131 MHz for 5.4 seconds was achieved. This was the highest power level for fusion research above 110 MHz in 1990. A pair of phased loop antenna arrays (2 × 2) showed sufficiently high coupling resistance. To keep the impedance matching between the antenna and the transmission line, a frequency feedback control (FFC) system was developed, and its effectiveness was proved to couple high power RF continuously to the variable plasma. In ITER, enhancement of dielectric loss tangent of ceramics due to neutron irradiation will limit power injection capability of the antenna significantly. To solve this problem, an all-metal support (AMS) was developed in the JT-60U ICRF heating system as a substitute for a ceramic support of a central conductor of a coaxial antenna feeder in the ITER ICRF antenna.