ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Chang Nyung Kim
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 787-799
Technical Paper | doi.org/10.13182/FST13-A24097
Articles are hosted by Taylor and Francis Online.
A three-dimensional liquid metal magnetohydrodynamic (LMMHD) flow in a manifold with three subchannels under a uniform magnetic field has been examined based on the computational fluid dynamics method. Although numerous analytic, experimental, and numerical studies on LMMHD duct flows have been performed, detailed flow characteristics of a LMMHD flow in a manifold with multiple channels have not been studied much. In the current study detailed behaviors of the fluid velocity, pressure, current, and electric potential of LMMHD flows in a manifold with three subchannels under a uniform magnetic field are elucidated. Also, an imbalance of mass flow rates in the three subchannels is addressed.