ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
I. N. Bogatu, J. R. Thompson, S. A. Galkin, J. S. Kim, HyperV Technologies Corp. Team
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 762-786
Technical Paper | doi.org/10.13182/FST13-A24096
Articles are hosted by Taylor and Francis Online.
Disruption mitigation in tokamaks by impurity injection aims to reduce the heat load and mechanical forces and to collisionally suppress runaway electrons. Rapid injection of sufficient mass, high penetrability, and large assimilation fraction in the core plasma together with rapid impurity redistribution over the whole plasma are required. FAR-TECH Inc. proposed the innovative idea of using hypervelocity ([greater-than or equivalent to]4 km/s), high-density ([greater-than or equivalent to]1017 cm−3), high-ram-pressure C60 nanoparticle plasma jets to deliver the impurity mass in [approximately]1 ms. For this purpose a large C60 gas mass of explosively sublimated powder, generated by a solid-state, pulsed-power-driven source injector cartridge containing TiH2 grains and C60 powder, is ionized and accelerated in a plasma accelerator. We report here the characterization of the TiH2/C60 injector cartridge using a 5-kJ capacitive driver, which produced up to [approximately]210 mg of C60 gas in <0.5 ms. The TiH2/C60 cartridge is the key component of the 100-kJ coaxial plasma gun ([approximately]35-cm length) prototype developed for a proof-of-principle experiment on a tokamak. Three-dimensional simulations show that a heavy C60 plasmoid penetrates deeply, as a compact structure, through a transverse magnetic barrier.