ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
F. Saint-Laurent, G. Martin, T. Alarcon, A. Le Luyer, P. B. Parks, P. Pastor, S. Putvinski, C. Reux, J. Bucalossi, S. Bremond, Ph. Moreau
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 711-718
Technical Paper | doi.org/10.13182/FST13-A24090
Articles are hosted by Taylor and Francis Online.
Runaway electrons (REs) generated during disruption are identified as a major issue for ITER and reactor-size tokamaks. Such electrons are produced when a large toroidal electric field is generated in the plasma. This field continuously accelerates low-collisional electrons up to relativistic energy. Such a large electric field occurs both in the plasma core at thermal quench of the disruption when the current profile flattens due to high magnetohydrodynamic activity, and during the current quench (CQ) of a disruption. These REs may initiate secondary RE generation during CQ due to the avalanching process, leading to a multiplication of these relativistic electrons. The impact of REs on the first wall is well localized due to their very small pitch angle. The energy deposition may be huge, and plasma-facing component damages are often reported.Mitigation techniques are thus mandatory to suppress RE formation or/and reduce their heat loads. Two ways are explored on Tore Supra: (a) suppressing the RE beam formation and avalanche amplification by multiple gas jet injections at CQ and (b) controlling the RE beam when it is formed and increasing the collisionality to slow down the relativistic electrons.