ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
J.-L. Duchateau, M. Coatanea, B. Lacroix, S. Nicollet, D. Ciazynski, P. Bayetti
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 705-710
Technical Paper | doi.org/10.13182/FST13-A24089
Articles are hosted by Taylor and Francis Online.
The quench of one of the ITER magnet systems is an irreversible transition of the conductor from superconducting to normal resistive state. The normal zone propagates along the cable-in-conduit conductor, dissipating a large power. The detection has to be fast enough (1 to 2 s) to initiate the dumping of the magnetic energy and avoid irreversible damage of the systems.The experience of CEA is based on the operation of the superconducting tokamak Tore Supra for more than 20 years. In support of ITER, CEA was also very involved in quench detection investigations during these past 3 years.The primary quench detection in ITER is based on voltage detection, the most rapid detection. The very magnetically disturbed environment during a plasma scenario makes the voltage detection particularly difficult, inducing large inductive components across the pulsed coils (10 kV) or coil subcomponents. Voltage compensations therefore have to be designed to discriminate the resistive voltage associated with the quench.A secondary detection based on a thermohydraulic signals system also has to be investigated to protect the environment in case of a nondetected quench, especially for the largest ITER system, which is the toroidal field system with a stored energy of 40 GJ.