ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Paul P. H. Wilson, Eric Daum, Ulrich Fischer, Ulrich Von Möllendorff, Detlef Woll
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 136-145
Technical Paper | doi.org/10.13182/FST98-A24
Articles are hosted by Taylor and Francis Online.
The purpose of the International Fusion Materials Irradiation Facility (IFMIF) is to provide irradiation conditions of a typical deuterium-tritium (D-T) fusion reactor for small material samples, but with higher irradiation levels. An extensive code and data development has been performed, allowing a comprehensive neutronic analysis of the high-flux test volume. New data evaluations for neutron interactions and responses at high energies (20 to 50 MeV) were performed and processed, and a Monte Carlo neutron source model for the Li(d,xn) reaction was developed for use with the MCNP neutron transport code.The neutron flux density was found to be >1014 ncm-2s-1 throughout the anticipated high-flux test volume with a high-energy fraction (>14 MeV) of ~20%. The available test volume with >20 dpa/full-power year in iron was found to be 550 ± 180 cm3. This uncertainty is due almost entirely to the uncertainty in the total neutron yield. Hydrogen and helium production rates were calculated and a helium/dpa ratio between 10 and 12 appm/dpa was found, which is similar to that found in a D-T fusion reactor. IFMIF was found to provide an adequate environment for the simulation of D-T fusion reactors, but more work is required to extend and improve the current data and tools.