ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Kuriyama, N. Akino, N. Ebisawa, L. Grisham, A. Honda, T. Itoh, M. Kawai, M. Kazawa, K. Mogaki, Y. Ohara, T. Ohga, Y. Okumura, H. Oohara, N. Umeda, K. Usui, K. Watanabe, M. Yamamoto, T. Yamamoto
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 410-423
Technical Paper | doi.org/10.13182/FST02-A237
Articles are hosted by Taylor and Francis Online.
The 500-keV negative-ion based neutral beam injector for JT-60U started operation in 1996. The beam power has been increased gradually through optimizing operation parameters of the ion sources and conquering many troubles in the ion source and power supplies caused by a high voltage break-down in the accelerator. However, some issues remain to be solved concerning the ion source for increasing further the beam power and the beam energy. The most serious issue of them is non-uniformity of source plasma in the arc chamber. Various countermeasures have been implemented to improve the non-uniformity. Some of those countermeasures have been found to be partially effective in reducing the non-uniformity of the source plasma, and as the result the ion source, so far, has accelerated negative-ion beams of 17.4A at 403keV with deuterium and 20A at 360keV with hydrogen against the goal of 22A at 500keV. The neutral beam injection power into the plasma has reached 5.8MW at 400keV with deuterium. Further efforts to reach the target of 10MW at 500keV have been continued.