ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S.K. Erents
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 453-458
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23221
Articles are hosted by Taylor and Francis Online.
Plasmas produced while using the MkII Bundle Divertor on DITE have been studied using a combined Langmuir/heat flux probe technique. Ion saturation currents and deposited powers to bolometers facing both the ion and electron drift directions have been measured. A substantial depression of the ion flux on the ion side is recorded, which has been explained by the shorter connection length to the divertor target plate. Radial profiles of electron temperature Te, ion temperature Ti, and local plasma density, ne have been calculated from the measurements. These are time resolved and have been studied both before and during neutral beam injection. E-folding lengths for deposited power of ∼ 1.0cm have been measured, but those for ion and electron temperature are much longer. Calculated values of Ti range from 50 to a few hundred eV, those for Te are an order of magnitude lower. An estimate of carbon limiter sputtering has been made which suggests that for the present discharge conditions (plasma current 150 kA, central density 1.5 – 3 × 1019 m−3), the sputtering rises with increasing density during neutral injection, although a fall in Ti is calculated.