ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
S.K. Erents
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 453-458
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23221
Articles are hosted by Taylor and Francis Online.
Plasmas produced while using the MkII Bundle Divertor on DITE have been studied using a combined Langmuir/heat flux probe technique. Ion saturation currents and deposited powers to bolometers facing both the ion and electron drift directions have been measured. A substantial depression of the ion flux on the ion side is recorded, which has been explained by the shorter connection length to the divertor target plate. Radial profiles of electron temperature Te, ion temperature Ti, and local plasma density, ne have been calculated from the measurements. These are time resolved and have been studied both before and during neutral beam injection. E-folding lengths for deposited power of ∼ 1.0cm have been measured, but those for ion and electron temperature are much longer. Calculated values of Ti range from 50 to a few hundred eV, those for Te are an order of magnitude lower. An estimate of carbon limiter sputtering has been made which suggests that for the present discharge conditions (plasma current 150 kA, central density 1.5 – 3 × 1019 m−3), the sputtering rises with increasing density during neutral injection, although a fall in Ti is calculated.