ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. E. Young, D. M. Gruen, M. J. Pellin, W. F. Calaway
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 434-446
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23219
Articles are hosted by Taylor and Francis Online.
A laser system for impurity diagnostics in the edge region of plasma devices is described. It consists of a scanning, single mode, cw dye laser followed by a 3-stage, fast flow dye cell amplifier, pumped by a high repetition rate excimer laser (60 mJ/pulse at 130 Hz, for 308 nm output). Substantial improvements are achieved over previous systems in scan speed (30 GHz/100 ms) and velocity resolution (now small relative to the widths of thermal distributions). The usefulness of high resolution is demonstrated by a model calculation for Fe velocity spectra involving the presence of thermal and sputtered flux, and spatial averaging. The high output pulse power (0.8 MW at 604 nm, 80 kW at 302 nm) allows efficient frequency doubling and can be used to vary the effective bandwidth by power broadening. Broadband operation (50 GHz FWHM) is also possible, for saturated measurements of atomic density. Laboratory velocity spectra for Fe atoms sputtered in the ground state demonstrate the capability for such measurements in a single Tokamak discharge at estimated densities of 108 atoms/cm3.