ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. A. Tagle&, A. Pospieszczyk
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 405-410
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23213
Articles are hosted by Taylor and Francis Online.
Inconel 600,Inconel 625 and austenitic steel (AISI 304LN) surfaces were cleaned in UHV by laser pulses of 1J total energy. Residual surface contamination layers were dissociated and desorbed. The surface cleanness degree reached was equivalent to that obtained by conventional cleaning techniques like bulk heating and sputtering by ion bombardment. A comparison between these three techniques is presented. The laser cleaning efficiency was found to be strongly dependent on the initial surface contamination degree and on the residual gas composition. In particular the effect of laser shots on the activation of the surface oxidation process at ambient pressures of about 10−9 mbar of CO was studied. The possibilities of using the laser heating technique as a tool in plasma edge diagnostic (in situ cleaning of probes,analysis of trapped particles, redeposition measurements,…) in fusion devices is discussed.