ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. A. Tagle&, A. Pospieszczyk
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 405-410
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23213
Articles are hosted by Taylor and Francis Online.
Inconel 600,Inconel 625 and austenitic steel (AISI 304LN) surfaces were cleaned in UHV by laser pulses of 1J total energy. Residual surface contamination layers were dissociated and desorbed. The surface cleanness degree reached was equivalent to that obtained by conventional cleaning techniques like bulk heating and sputtering by ion bombardment. A comparison between these three techniques is presented. The laser cleaning efficiency was found to be strongly dependent on the initial surface contamination degree and on the residual gas composition. In particular the effect of laser shots on the activation of the surface oxidation process at ambient pressures of about 10−9 mbar of CO was studied. The possibilities of using the laser heating technique as a tool in plasma edge diagnostic (in situ cleaning of probes,analysis of trapped particles, redeposition measurements,…) in fusion devices is discussed.