ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Husam Gurol, Ali E. Dabiri
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 605-615
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST84-A23142
Articles are hosted by Taylor and Francis Online.
The safety of the Mirror Advanced Reactor Study (MARS) tandem mirror reactor is assessed. Only prompt consequences to the public at the plant boundary, which is taken to be 1000 m, are considered. The major radioactive inventories in MARS reside in the first-wall/blanket structure, coolant, and tritium. The greatest radioactivity resides in the HT-9 first-wall/blanket structure. The only accident scenario identified that could lead to a first-wall meltdown was a loss-of-coolant accident (LOCA) accompanied by the inability to shut off the plasma. However, since only oxides of molybdenum are expected to be volatized from the hot HT-9 structure, the public consequences are found to be low. A LOCA can result in large doses if the activity in the activated corrosion products and LiPb coolant can be transported outside the reactor containment building. However, most of the LiPb would be expected to solidify, and any aerosols that are produced will likely plate out on surfaces or settle. Various tritium accident scenarios were considered. Release of all the tritium in the reactor building (51 g) leads to a dose of 21 rem. A much more likely accident involves partial leakage due to some reactor containment damage.