ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Masahiro Kinoshita
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 574-583
Technical Paper | Tritium System | doi.org/10.13182/FST84-A23139
Articles are hosted by Taylor and Francis Online.
The simulation procedure used in the code, CRYDIS-2, is greatly improved. The previous procedure used the Newton-Raphson method choosing a set of temperatures and liquid flow rates for the independent variables. Considering the property that the convergence characteristics of the liquid flow rates are much less sensitive to the type of the iterative method than those of the temperatures, the iterative loop is divided into two loops — the inner loop of the quasi-Newton method for temperature corrections and the outer loop of the successive iteration for flow rate corrections. The corrections of the deviation coefficients are also made in the outer loop, together with the flow rate corrections, when the nonideality of the hydrogen isotope solution is incorporated in the model. Since the order of the Jacobian matrix is halved, and the numerical evaluation of the Jacobian matrix and its inversion are needed only once, both the computer storage requirements and computation time are remarkably reduced. Thus, a new computer code, CRYDIS-N, which uses an efficient simulation procedure, is developed. Also, a simple but powerful method for estimating the initial set of temperatures is proposed, and it assures rapid achievement of convergence. The simulation procedure is a verison particularly developed for simulating hydrogen isotope distillation columns.