ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
YA. Kolesnichenko, D. Anderson, M. Lisak
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 543-547
Technical Paper | Plasma Engineering | doi.org/10.13182/FST84-A23135
Articles are hosted by Taylor and Francis Online.
The regimes of thermonuclear burning in self-sustained and driven tokamak reactors using deuterium-tritium plasma with nuclei polarized along the magnetic field are investigated. A comparison is made between the burning regimes in reactors with polarized and unpolarized plasma. In particular, it is shown that the temperature regions that allow stable steady-state thermonuclear reactions are similar for both types of reactors. However, as compared to the conventional case, the driven reactor with polarized nuclei requires higher power levels of neutral injection or radio-frequency heating to achieve the same stable temperature regime. The power multiplication factor, when using polarized nuclei, is unchanged or may be higher due to deterioration of alpha-particle confinement.