ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
YA. Kolesnichenko, D. Anderson, M. Lisak
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 543-547
Technical Paper | Plasma Engineering | doi.org/10.13182/FST84-A23135
Articles are hosted by Taylor and Francis Online.
The regimes of thermonuclear burning in self-sustained and driven tokamak reactors using deuterium-tritium plasma with nuclei polarized along the magnetic field are investigated. A comparison is made between the burning regimes in reactors with polarized and unpolarized plasma. In particular, it is shown that the temperature regions that allow stable steady-state thermonuclear reactions are similar for both types of reactors. However, as compared to the conventional case, the driven reactor with polarized nuclei requires higher power levels of neutral injection or radio-frequency heating to achieve the same stable temperature regime. The power multiplication factor, when using polarized nuclei, is unchanged or may be higher due to deterioration of alpha-particle confinement.