ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Toshio Ida, Shunsuke Kondo, Yasumasa Togo
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 64-82
Technical Paper | Shielding | doi.org/10.13182/FST84-A23121
Articles are hosted by Taylor and Francis Online.
A numerical analysis program for radiation transport in axisymmetric toroidal geometry AIDA is developed using the method of direct integration (method of characteristics). The shape of the torus cross section is represented by coupled ellipses with different elongations. Several new techniques, such as a ray-tracing technique in the core plasma region and subdivision of angular mesh cells, are introduced to make the method well adapted to the neutronics analysis of a tokamak. These improvements are illustrated by sample toroidal geometry calculations. To verify the validity of the present program, results of analysis for two sample problems are compared with results of DOT-3.5 as well as those of Monte Carlo calculations. Agreement between the results of AIDA and those of DOT-3.5 becomes better as the quadrature approximation used in DOT-3.5 becomes higher. For the same accuracy, the AIDA code requires only about half as much running time as the DOT-3.5 code for a practical natural lithium blanket system.