ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Toshio Ida, Shunsuke Kondo, Yasumasa Togo
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 64-82
Technical Paper | Shielding | doi.org/10.13182/FST84-A23121
Articles are hosted by Taylor and Francis Online.
A numerical analysis program for radiation transport in axisymmetric toroidal geometry AIDA is developed using the method of direct integration (method of characteristics). The shape of the torus cross section is represented by coupled ellipses with different elongations. Several new techniques, such as a ray-tracing technique in the core plasma region and subdivision of angular mesh cells, are introduced to make the method well adapted to the neutronics analysis of a tokamak. These improvements are illustrated by sample toroidal geometry calculations. To verify the validity of the present program, results of analysis for two sample problems are compared with results of DOT-3.5 as well as those of Monte Carlo calculations. Agreement between the results of AIDA and those of DOT-3.5 becomes better as the quadrature approximation used in DOT-3.5 becomes higher. For the same accuracy, the AIDA code requires only about half as much running time as the DOT-3.5 code for a practical natural lithium blanket system.