ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Matthew C. Carroll, John G. Gilligan
Fusion Science and Technology | Volume 5 | Number 3 | May 1984 | Pages 334-349
Technical Paper | First-Wall Technology | doi.org/10.13182/FST84-A23109
Articles are hosted by Taylor and Francis Online.
A model for predicting bremsstrahlung energy deposition in first-wall materials and the effect of this energy deposition on wall temperature distributions is proposed. In this model the bremsstrahlung energy spectrum is divided into a finite number of discrete energy groups, each with an overall power fraction and average wavelength. The volumetric heating effects of each of these individual groups are superimposed to obtain overall temperature distributions in first-wall configurations using rectangular and cylindrical coordinates. The proposed multigroup model is then applied to several first-wall designs and compared with existing models, notably the “surface-heating” model, which utilizes the assumption that the bremsstrahlung energy is deposited on the wall surface. It is concluded that in many designs involving advanced fuels or low-Z first-wall materials the surface-heating model over-predicts wall temperatures near the plasma side, and the multigroup model may be necessary for accurate temperature calculation.