ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
S. I. Abdel-Khalik, Pierre-André Haldy, Anil Kumar
Fusion Science and Technology | Volume 5 | Number 2 | March 1984 | Pages 189-208
Technical Paper | Experimental Devices | doi.org/10.13182/FST84-A23093
Articles are hosted by Taylor and Francis Online.
The first in a series of fusion-fission hybrid blanket assemblies to be tested in the LOTUS test facility at the Swiss Federal Institute of Technology in Lausanne (EPFL) is described. The aim of the EPFL program is to conduct integral neutronic benchmark experiments with design features resembling genuine blanket design approaches. The assembly described here simulates fission-suppressed thorium blankets of the type used in direct enrichment hybrid designs. The neutronic studies on which the design is based are described in detail. The blanket assembly is a parallelepiped 85 em thick, 100 em high, and 140 em wide. It is to be placed in front of a Haefely sealed neutron generator with an intensity of 5 × 1012 14-MeV neutron/s. It consists of a 2-mm-thick stainless steel sheet simulating the first wall, followed by a 100-mm-thick lead plate for neutron multiplication, a 35-mm-thick spectrum adjustment zone of lithium carbonate blocks encased in aluminum, a 277.2-mm-thick fissile breeding zone of aluminum-clad thorium oxide rods, a 150-mm-thick tritium breeding zone of lithium carbonate blocks encased in aluminum, a 250-mm-thick graphite reflector, and, finally, a 35-mm-thick scavenging zone of lithium carbonate. The experiments were to begin in 1984. They will provide integral neutronic data for comparison with predictions of current calculational techniques and cross-section libraries. Such comparison will provide an estimate of the uncertainties in calculated hybrid blanket neutronic performance and, together with sensitivity studies, will help identify specific areas of data and/or modeling improvement.