ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
S. I. Abdel-Khalik, Pierre-André Haldy, Anil Kumar
Fusion Science and Technology | Volume 5 | Number 2 | March 1984 | Pages 189-208
Technical Paper | Experimental Devices | doi.org/10.13182/FST84-A23093
Articles are hosted by Taylor and Francis Online.
The first in a series of fusion-fission hybrid blanket assemblies to be tested in the LOTUS test facility at the Swiss Federal Institute of Technology in Lausanne (EPFL) is described. The aim of the EPFL program is to conduct integral neutronic benchmark experiments with design features resembling genuine blanket design approaches. The assembly described here simulates fission-suppressed thorium blankets of the type used in direct enrichment hybrid designs. The neutronic studies on which the design is based are described in detail. The blanket assembly is a parallelepiped 85 em thick, 100 em high, and 140 em wide. It is to be placed in front of a Haefely sealed neutron generator with an intensity of 5 × 1012 14-MeV neutron/s. It consists of a 2-mm-thick stainless steel sheet simulating the first wall, followed by a 100-mm-thick lead plate for neutron multiplication, a 35-mm-thick spectrum adjustment zone of lithium carbonate blocks encased in aluminum, a 277.2-mm-thick fissile breeding zone of aluminum-clad thorium oxide rods, a 150-mm-thick tritium breeding zone of lithium carbonate blocks encased in aluminum, a 250-mm-thick graphite reflector, and, finally, a 35-mm-thick scavenging zone of lithium carbonate. The experiments were to begin in 1984. They will provide integral neutronic data for comparison with predictions of current calculational techniques and cross-section libraries. Such comparison will provide an estimate of the uncertainties in calculated hybrid blanket neutronic performance and, together with sensitivity studies, will help identify specific areas of data and/or modeling improvement.