ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Hiroshi Yoshida, Hidefumi Takeshita, Satoshi Konishi, Hideo Ohno, Toshimasa Kurasawa, Hitoshi Watanabe, Yuji Naruse
Fusion Science and Technology | Volume 5 | Number 2 | March 1984 | Pages 178-188
Technical Paper | Tritium Systems | doi.org/10.13182/FST84-A23092
Articles are hosted by Taylor and Francis Online.
Experimental and theoretical feasibility studies of a catalytic reduction method were carried out for application to the tritium recovery processes in fusion reactor systems. Experiments on the decomposition of water vapor were performed under the following conditions: temperatures of 350 to 650 K; an H2O vapor concentration of 103 to 104 ppm; a mole ratio of CO to H2O of 1 to 10; and a space velocity of 2 × 102 to 2 × 104 h−1. The catalyst used was a mixture of CuO, ZnO, and Cr2O3. It has been demonstrated that this method using the zinc-stabilized catalyst can be adapted to recover tritium from tritiated water with a high conversion ratio (>0.999 per one path) at comparatively low temperature (450 K). The catalytic rate equation and the rate constants determined by this work can be used for designing a practical catalytic reduction bed for the decomposition process of the tritiated water.