ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Hiroshi Yoshida, Hidefumi Takeshita, Satoshi Konishi, Hideo Ohno, Toshimasa Kurasawa, Hitoshi Watanabe, Yuji Naruse
Fusion Science and Technology | Volume 5 | Number 2 | March 1984 | Pages 178-188
Technical Paper | Tritium Systems | doi.org/10.13182/FST84-A23092
Articles are hosted by Taylor and Francis Online.
Experimental and theoretical feasibility studies of a catalytic reduction method were carried out for application to the tritium recovery processes in fusion reactor systems. Experiments on the decomposition of water vapor were performed under the following conditions: temperatures of 350 to 650 K; an H2O vapor concentration of 103 to 104 ppm; a mole ratio of CO to H2O of 1 to 10; and a space velocity of 2 × 102 to 2 × 104 h−1. The catalyst used was a mixture of CuO, ZnO, and Cr2O3. It has been demonstrated that this method using the zinc-stabilized catalyst can be adapted to recover tritium from tritiated water with a high conversion ratio (>0.999 per one path) at comparatively low temperature (450 K). The catalytic rate equation and the rate constants determined by this work can be used for designing a practical catalytic reduction bed for the decomposition process of the tritiated water.