ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Constellation considers advanced nuclear in Maryland
Constellation is considering adding 2,000 MW of nuclear energy at Calvert Cliffs, located on Chesapeake Bay near Lusby, Md., which would effectively double the site’s output, according to the company’s near- and long-term project proposals submitted to the Marland Public Service Commission this week.
Magdi M. H. Ragheb
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 115-137
Deep Penetration: Problem and Method of Solution | Special Section Contents / Sheilding | doi.org/10.13182/FST84-A23085
Articles are hosted by Taylor and Francis Online.
A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the first-event source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems.