ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Masahiro Kinoshita, John R. Bartlit, Robert H. Sherman
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 30-41
Technical Paper | Special Section Contents / Tritium System | doi.org/10.13182/FST84-A23075
Articles are hosted by Taylor and Francis Online.
The dynamics and control of a hydrogen isotope distillation column are discussed. The proportionalintegral (PI) controller parameter setting method previously reported by one of the authors is further investigated and extended by applying the method to two different experimental control modes. The method accounts for the nonlinearity of the column to some extent and allows us to predict the unstable region or the region of the proportional-only control behavior. The method can also be applied to the cases where the measurement of the controlled variable is accompanied by a significant time lag. The mean delay time depends greatly on the controlled variable and manipulated variable chosen and the upset condition assumed, varying by over two orders of magnitude. The PI control presents great stability, and a rather long time lag is permissible in the measurement of the controlled variable if the flow rate of the top product is chosen for the manipulated variable. On the other hand, if the reflux ratio is manipulated for controlling the lightest key element in the bottom product, the great stability is no longer present and the time lag must be adequately short. Once several response curves of the controlled variable are calculated for different magnitudes of the manipulated variable upset, the parameter setting method proposed makes it possible to study how long a time lag is allowable in the measurement of the controlled variable.