ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Masahiro Kinoshita, John R. Bartlit, Robert H. Sherman
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 30-41
Technical Paper | Special Section Contents / Tritium System | doi.org/10.13182/FST84-A23075
Articles are hosted by Taylor and Francis Online.
The dynamics and control of a hydrogen isotope distillation column are discussed. The proportionalintegral (PI) controller parameter setting method previously reported by one of the authors is further investigated and extended by applying the method to two different experimental control modes. The method accounts for the nonlinearity of the column to some extent and allows us to predict the unstable region or the region of the proportional-only control behavior. The method can also be applied to the cases where the measurement of the controlled variable is accompanied by a significant time lag. The mean delay time depends greatly on the controlled variable and manipulated variable chosen and the upset condition assumed, varying by over two orders of magnitude. The PI control presents great stability, and a rather long time lag is permissible in the measurement of the controlled variable if the flow rate of the top product is chosen for the manipulated variable. On the other hand, if the reflux ratio is manipulated for controlling the lightest key element in the bottom product, the great stability is no longer present and the time lag must be adequately short. Once several response curves of the controlled variable are calculated for different magnitudes of the manipulated variable upset, the parameter setting method proposed makes it possible to study how long a time lag is allowable in the measurement of the controlled variable.