ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
W. K. Dagenhart, W. L. Gardner, W. L. Stirling, J. H. Whealton
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1430-1435
Magnet Engineering | doi.org/10.13182/FST83-A23057
Articles are hosted by Taylor and Francis Online.
Scaling studies for a SITEX negative ion source to produce 200-keV, 10-A, long pulse D-beams are under way at Oak Ridge National Laboratory (ORNL). Designs have been restricted to the use of established techniques and reasonably welldemonstrated scaling. The results show that the 1-A SITEX source can be directly scaled to produce 200-keV, 10-A long pulse ion beams with a source power efficiency of <5 kW of total plasma generator power per ampere of D- beam generated. Extracted electron-to-D- ratios should be <0.06, with all extracted electrons recovered at <10% of the first gap potential energy difference. The close-coupled accelerating structure will be 5 em long and have five electrodes with 21 slits each, with a 50-kV/cm field in each gap. No decel electrode was included because of the transverse magnetic field. Electrons formed in each gap by the ~16% charge-exchange loss of D- in the total accelerator column will be collected by electron recovery structures associated with the gaps at an average energy of 50% of a gap's potential energy difference. Atomic gas efficiency will be >67%. Beam divergence calculations using the ORNL optics code give θrms = ±0.4°. The ion source magnetic field provides momentum dispersion of the extracted beam, separating out both the electrons and all heavy ion impurities and low energy D0 particles formed by charge exchange in the accelerating column. A D2 gas neutralization cell and a charge separation magnet provide 1 MW of D0 beam at 200 keV for injection. The overall beam line dimensions are 2.2 × 1.0 × 5.0 m (H × W × L).