We present an analytical and numerical analysis of a tokamak reactor with a set of helical coils added in order to eliminate plasma disruptions. The optimal helical configuration was found to be a set of continuous, = 2 stellarator coils which are made of copper and are internal to the toroidal field coils, being the number of poloidal field periods. (The optimization process did not include evaluation of the viability of a modular stellarator reactor). Scaling laws were developed for this optimal configuration, and a series of parametric scans are performed with varying assumptions for the forces on the helical coils and the ratio of helical coil transform to plasma transform (M*). The option space available for attractive reactor designs is strongly constrained and involves large forces on the helical coils, low q plasma operation (q being the plasma safety factor), and moderately low M* (3 to 5). Numerical calculations showed that M* must be > 3 in order to obtain well defined flux surfaces. This is in agreement with results from the JIPP-TII tokamak.