ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Y. Hsu, L. G. Miller, G. A. Deis, Y. D. Harker, G. R. Longhurst, T. S. Born, E. H. Ottewitte, K. D. Watts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1216-1221
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23023
Articles are hosted by Taylor and Francis Online.
A large-volume, distributed, pulsed, 14 MeV neutron source, which utilizes the high powered (270-GW) Power Burst Facility (PBF) at the Idaho National Engineering Laboratory, is described. The concept of utilizing existing fission test reactors to test fusion first wall/blanket (FW/B) components and systems has been adequately documented. In all previous scenarios, the normal fission spectrum (including tailoring) was shown to produce adequate heating profiles and some tritium breeding. However, one recognized shortcoming has been the absence of the 14 MeV neutron component. This paper describes a scheme whereby the fission neutrons would be employed to produce the desired 14 MeV component. The data obtained from tests in this large-volume [20 em (8 in.) in diameter and 90 em (36 in.) in length], distributed neutron source will pertain to both near-term (Tokamak Fusion Test Reactor—TFTR) and future pulsed fusion machines. Specifically, application requiring high flux but low fluence is foreseen in the areas of dosimetry benchmarking for tritium breeding performance code verification. As a general purpose, FW/B integrated technology development capability, the PBF is shown to be pertinent to addressing the bulk-heated, solid breeder blanket thermal and mechanical issues; tritium permeation in the presence of radiation, and barrier development in the prototypical radiation environment associated with the first wall; issues associated with the technology of breeder materials; and in situ tritium recovery process characterization and system development.