ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
P. Y. Hsu, L. G. Miller, G. A. Deis, Y. D. Harker, G. R. Longhurst, T. S. Born, E. H. Ottewitte, K. D. Watts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1216-1221
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23023
Articles are hosted by Taylor and Francis Online.
A large-volume, distributed, pulsed, 14 MeV neutron source, which utilizes the high powered (270-GW) Power Burst Facility (PBF) at the Idaho National Engineering Laboratory, is described. The concept of utilizing existing fission test reactors to test fusion first wall/blanket (FW/B) components and systems has been adequately documented. In all previous scenarios, the normal fission spectrum (including tailoring) was shown to produce adequate heating profiles and some tritium breeding. However, one recognized shortcoming has been the absence of the 14 MeV neutron component. This paper describes a scheme whereby the fission neutrons would be employed to produce the desired 14 MeV component. The data obtained from tests in this large-volume [20 em (8 in.) in diameter and 90 em (36 in.) in length], distributed neutron source will pertain to both near-term (Tokamak Fusion Test Reactor—TFTR) and future pulsed fusion machines. Specifically, application requiring high flux but low fluence is foreseen in the areas of dosimetry benchmarking for tritium breeding performance code verification. As a general purpose, FW/B integrated technology development capability, the PBF is shown to be pertinent to addressing the bulk-heated, solid breeder blanket thermal and mechanical issues; tritium permeation in the presence of radiation, and barrier development in the prototypical radiation environment associated with the first wall; issues associated with the technology of breeder materials; and in situ tritium recovery process characterization and system development.