ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
P. Y. Hsu, L. G. Miller, G. A. Deis, Y. D. Harker, G. R. Longhurst, T. S. Born, E. H. Ottewitte, K. D. Watts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1216-1221
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23023
Articles are hosted by Taylor and Francis Online.
A large-volume, distributed, pulsed, 14 MeV neutron source, which utilizes the high powered (270-GW) Power Burst Facility (PBF) at the Idaho National Engineering Laboratory, is described. The concept of utilizing existing fission test reactors to test fusion first wall/blanket (FW/B) components and systems has been adequately documented. In all previous scenarios, the normal fission spectrum (including tailoring) was shown to produce adequate heating profiles and some tritium breeding. However, one recognized shortcoming has been the absence of the 14 MeV neutron component. This paper describes a scheme whereby the fission neutrons would be employed to produce the desired 14 MeV component. The data obtained from tests in this large-volume [20 em (8 in.) in diameter and 90 em (36 in.) in length], distributed neutron source will pertain to both near-term (Tokamak Fusion Test Reactor—TFTR) and future pulsed fusion machines. Specifically, application requiring high flux but low fluence is foreseen in the areas of dosimetry benchmarking for tritium breeding performance code verification. As a general purpose, FW/B integrated technology development capability, the PBF is shown to be pertinent to addressing the bulk-heated, solid breeder blanket thermal and mechanical issues; tritium permeation in the presence of radiation, and barrier development in the prototypical radiation environment associated with the first wall; issues associated with the technology of breeder materials; and in situ tritium recovery process characterization and system development.