ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Yousry Gohar
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1159-1164
Neutronics and Shielding | doi.org/10.13182/FST83-A23015
Articles are hosted by Taylor and Francis Online.
First, a one-dimensional scoping study was performed for the gamma ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose equivalent results are analyzed as a function of the radiation shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma ray sources. Also, a detailed biological dose survey was performed which included: a) the dose equivalent inside and outside the building, b) the dose equivalent from the two mazes of the building, and c) the skyshine contribution to the dose equivalent.