ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
J. A. Blink, G. P. Lasche
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1146-1151
Environment and Safety | doi.org/10.13182/FST83-A23013
Articles are hosted by Taylor and Francis Online.
Five steels (PCA, HT-9, thermally stabilized 2.25 Cr-1 Mo, Nb stabilized 2.25 Cr-1 Mo, and 2.25 Cr-1 V) are compared as a function of time from the viewpoints of activation, afterheat, inhalation biological hazard potential (BHP), ingestion BHP, and feasibility of disposal by shallow land burial. An additional case uses the 2.25 Cr-1 V steel with a liquid metal wall (LMW) protective shield between the neutron source and the wall. (This geometry is feasible for inertial confinement fusion reactors.) The PCA steel is the worst choice and the LMW protected 2.25 Cr-1 V is the best choice by substantial margins from all five viewpoints. The HT-9 and two versions of 2.25 Cr-1 Mo are roughly the same at intermediate values. The 2.25 Cr-1 V has about the same afterheat as those three steels, but its waste disposal feasibility is considerably better. Under NRC's proposed low level waste disposal rule (10CFR61), only the 2.25 Cr-1 V could be considered low level waste suitable for shallow land burial.