Three options for the disposition of irradiated materials from the STARFIRE toroidal field (TF) magnets were examined, namely, (1) preparation of the irradiated magnet for the subsequent refabrication of a new magnet using the irradiated materials, (2) reprocessing of selected materials and the subsequent manufacturing of a new magnet using these and new materials with standard fabrication techniques, and (3) disposal of the irradiated magnet material. The results indicate that refabrication of a magnet using the acceptable components of the irradiated magnet is technologically feasible. The total cost of refabricating the 12 TF magnets was estimated to be $21 million in 1982 dollars. Since this option avoids the purchase of new magnets which would cost over $170 million, it is the preferred economic choice. In comparison, reprocessing and recycling of the magnet materials through standard channels of trade yields a net profit of $0.4 million, but requires the purchase of a new set of magnets. In the event that the old magnets are unusable (e.g., as a result of significant advances in magnet design or severe accidental damage), reprocessing of the TF-coil materials can be used to recover the decommissioning costs associated with the STARFIRE magnets. Lastly, the low induced radioactivity levels in the magnets permit their qualification as Class A radioactive waste. Simply disposing of the magnets via shallow land burial was estimated to cost $3 million, including all the associated costs of dismantling, packaging, shipping, and ultimate disposal.