ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
I. Maya, H. E. Levine, D. D. Peterman, S. Strausberg, K. R. Schultz
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1141-1145
Environment and Safety | doi.org/10.13182/FST83-A23012
Articles are hosted by Taylor and Francis Online.
Three options for the disposition of irradiated materials from the STARFIRE toroidal field (TF) magnets were examined, namely, (1) preparation of the irradiated magnet for the subsequent refabrication of a new magnet using the irradiated materials, (2) reprocessing of selected materials and the subsequent manufacturing of a new magnet using these and new materials with standard fabrication techniques, and (3) disposal of the irradiated magnet material. The results indicate that refabrication of a magnet using the acceptable components of the irradiated magnet is technologically feasible. The total cost of refabricating the 12 TF magnets was estimated to be $21 million in 1982 dollars. Since this option avoids the purchase of new magnets which would cost over $170 million, it is the preferred economic choice. In comparison, reprocessing and recycling of the magnet materials through standard channels of trade yields a net profit of $0.4 million, but requires the purchase of a new set of magnets. In the event that the old magnets are unusable (e.g., as a result of significant advances in magnet design or severe accidental damage), reprocessing of the TF-coil materials can be used to recover the decommissioning costs associated with the STARFIRE magnets. Lastly, the low induced radioactivity levels in the magnets permit their qualification as Class A radioactive waste. Simply disposing of the magnets via shallow land burial was estimated to cost $3 million, including all the associated costs of dismantling, packaging, shipping, and ultimate disposal.