ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
S. J. Piet, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1115-1120
Environment and Safety | doi.org/10.13182/FST83-A23007
Articles are hosted by Taylor and Francis Online.
Rapid structural oxidation resulting from accidental high temperature exposure of activated fusion material to reactive gases is potentially an important mechanism in the release of radioactivity or damage to the reactor. The reaction rates of 316 SS, HT-9, V-alloy, and TZM with air have been examined on the basis of theory and previous experiments. The low melting points of the primary oxides of the base metals cause oxidation of V-alloy and TZM to become very rapid above approximately 700°C, although vanadium species are far less volatile. The Mo content of 316 SS and HT-9 appears to make them susceptible to rapid oxidation above approximately 1000 and 1300°C, respectively. At such temperatures, the oxidation rates of steels are predicted to be over an order of magnitude less than Mo and V. The volatilization rates of TZM are expected to be several orders of magnitude higher than the other materials studied.