ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
T. G. Brown, C. A. Flanagan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1031-1036
Next-Generation Devices | doi.org/10.13182/FST83-A22994
Articles are hosted by Taylor and Francis Online.
Fusion Engineering Design Center/Westinghouse, Electric Corporation, Post Office Box Y, FEDC Building, Oak Ridge, Tennessee 37830, (615)576-5503 The early tokamak reactor configuration was developed as a means to identify engineering and technology problems and, if possible, suggest resolutions. The power reactor was depicted as a large device with many superconducting toroidal field (TF) coils and many distributed internal and external poloidal field (PF) coils. The mechanical configuration dictated a complicated maintenance approach. Access to the plasma chamber was limited. Particular attention has been paid, in recent reactor studies,1-3 to incorporate attractive, cost-effective engineering features to minimize the device complexity and satisfy the assembly and maintenance requirements of the various reactor components. This has been accomplished without degrading the physics operating parameters of the reactor. In the design process, a number of desirable engineering features have been identified that, when incorporated, make the tokamak a much more attractive reactor candidate Recent scoping studies examined a series of superconducting, long-pulse Driven Current Tokamak (DCT) devices. One class of options is an ignited, D-T burning device designated DCT-8. It was concluded that the DCT-8 is a most attractive engineering option to adequately bridge the gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR).