ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. G. Brown, C. A. Flanagan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1031-1036
Next-Generation Devices | doi.org/10.13182/FST83-A22994
Articles are hosted by Taylor and Francis Online.
Fusion Engineering Design Center/Westinghouse, Electric Corporation, Post Office Box Y, FEDC Building, Oak Ridge, Tennessee 37830, (615)576-5503 The early tokamak reactor configuration was developed as a means to identify engineering and technology problems and, if possible, suggest resolutions. The power reactor was depicted as a large device with many superconducting toroidal field (TF) coils and many distributed internal and external poloidal field (PF) coils. The mechanical configuration dictated a complicated maintenance approach. Access to the plasma chamber was limited. Particular attention has been paid, in recent reactor studies,1-3 to incorporate attractive, cost-effective engineering features to minimize the device complexity and satisfy the assembly and maintenance requirements of the various reactor components. This has been accomplished without degrading the physics operating parameters of the reactor. In the design process, a number of desirable engineering features have been identified that, when incorporated, make the tokamak a much more attractive reactor candidate Recent scoping studies examined a series of superconducting, long-pulse Driven Current Tokamak (DCT) devices. One class of options is an ignited, D-T burning device designated DCT-8. It was concluded that the DCT-8 is a most attractive engineering option to adequately bridge the gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR).