ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J.H. Schultz, D.B. Montgomery
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1019-1024
Next-Generation Devices | doi.org/10.13182/FST83-A22992
Articles are hosted by Taylor and Francis Online.
Alcator DCT is an experimental tokamak proposed to be built at M.I.T. It features extremely long pulses, RF heating and current drive, and an all superconducting magnet system. The toroidal magnets produce a field on-axis of 7 T, permitting current drive at high density and ion heating with existing power supplies. The device is designed to maximize the use of existing facilities at M.I.T. in order to build a machine large enough for simultaneous heating and current drive at low cost. This report concentrates on a design option with 24 circular toroidal field (TF) magnets, which represents the second iteration in the conceptual design of this machine. This design is a modification of the HESTER concept developed by the authors1, The DCT design is an advance over the HESTER design, in that it has adequate horizontal port space for human access and for tangential viewing of the plasma at the geometric center. This was achieved by decreasing the number of TF coils from 36 to 24. increasing the magnet bore from 52 to 62 em and shaving diagonals from noncritical areas of the case in the lead and header region. Recent perceptions of the requirements of the tokamak program in the areas of impurity control and in-vessel component screening indicate that a third significant iteration of the DCT concept is necessary. The Alcator DCT uses pumped limiters for long term impurity control. Doubts about the efficacy of pumped limiters and a desire to concentrate on long-term impurity control issues led to the recommendation that DCT be modified to include expanded boundary and simplified poloidal divertor operation. Early work on these options is described briefly.