ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J.H. Schultz, D.B. Montgomery
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1019-1024
Next-Generation Devices | doi.org/10.13182/FST83-A22992
Articles are hosted by Taylor and Francis Online.
Alcator DCT is an experimental tokamak proposed to be built at M.I.T. It features extremely long pulses, RF heating and current drive, and an all superconducting magnet system. The toroidal magnets produce a field on-axis of 7 T, permitting current drive at high density and ion heating with existing power supplies. The device is designed to maximize the use of existing facilities at M.I.T. in order to build a machine large enough for simultaneous heating and current drive at low cost. This report concentrates on a design option with 24 circular toroidal field (TF) magnets, which represents the second iteration in the conceptual design of this machine. This design is a modification of the HESTER concept developed by the authors1, The DCT design is an advance over the HESTER design, in that it has adequate horizontal port space for human access and for tangential viewing of the plasma at the geometric center. This was achieved by decreasing the number of TF coils from 36 to 24. increasing the magnet bore from 52 to 62 em and shaving diagonals from noncritical areas of the case in the lead and header region. Recent perceptions of the requirements of the tokamak program in the areas of impurity control and in-vessel component screening indicate that a third significant iteration of the DCT concept is necessary. The Alcator DCT uses pumped limiters for long term impurity control. Doubts about the efficacy of pumped limiters and a desire to concentrate on long-term impurity control issues led to the recommendation that DCT be modified to include expanded boundary and simplified poloidal divertor operation. Early work on these options is described briefly.