We describe a design concept for a tokamak that has the capability of sustained ignited operation and utilizes high performance copper plate magnets to minimize size and cost. We refer to this device as LITE for long-pulse ignited test experiment. LITE is designed so that it could be located in the TFTR Test Cell, so that substantial cost savings can be realized. Two design options are considered. Illustrative parameters for the lower beta option (LITE-1) are a major radius of 2.7 m, a maximum magnetic field on axis of 8.1 T, and <β> = 0.05. Steadystate water cooling would be used for nominal DT operation and for very long pulse hydrogen operation. Inertial cooling with liquid nitrogen could be employed for a relatively small number of pulses to provide the highest magnetic fields and ignition margins. The second option (LITE- 2) makes use of a highly shaped plasma to obtain high beta (> 10%) operation. The LITE-2 concept is at a very early stage, so that emphasis in this paper is on the description of LITE-1.