ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
L. Bromberg, D. Cohn, J.E.C. Williams, D.L. Jassby, M. Okabayashi
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1013-1018
Next-Generation Devices | doi.org/10.13182/FST83-A22991
Articles are hosted by Taylor and Francis Online.
We describe a design concept for a tokamak that has the capability of sustained ignited operation and utilizes high performance copper plate magnets to minimize size and cost. We refer to this device as LITE for long-pulse ignited test experiment. LITE is designed so that it could be located in the TFTR Test Cell, so that substantial cost savings can be realized. Two design options are considered. Illustrative parameters for the lower beta option (LITE-1) are a major radius of 2.7 m, a maximum magnetic field on axis of 8.1 T, and <β> = 0.05. Steadystate water cooling would be used for nominal DT operation and for very long pulse hydrogen operation. Inertial cooling with liquid nitrogen could be employed for a relatively small number of pulses to provide the highest magnetic fields and ignition margins. The second option (LITE- 2) makes use of a highly shaped plasma to obtain high beta (> 10%) operation. The LITE-2 concept is at a very early stage, so that emphasis in this paper is on the description of LITE-1.