ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Jack Hovingh
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 973-978
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22985
Articles are hosted by Taylor and Francis Online.
This study parametrically examines the implications on inertial fusion reactor design of the use of direct drive pellets as an alternative to the radiation-driven targets. We have examined the impacts of direct illumination on mirror damage constraints, reactor neutronic performance, and system energetics and cost. The capital costs for low f/number, direct-illumination-driven inertial fusion power plants are required to be significantly less than those for the radiation-driven or high f/number direct illumination driven power plants to produce electricity at the same cost.