ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
John H. Pitts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 967-972
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22984
Articles are hosted by Taylor and Francis Online.
The Cascade concept uses the high-temperature (1200 K) potential of a solid Li2O pebble blanket in conjunction with centrifugal action to produce a safe and highly efficient (up to 55%) reaction chamber for commercial power production. One option using a 25-mm-thick steel wall is shown to have low primary stresses of 22 MPa, which when coupled with a secondary thermal stress of 132 MPa, satisfies the intent and methodology for an ASME-designed vessel. A high tritium breeding ratio of 1.35 results from direct exposure of the Li2O blanket to the fusion reactions. Vacuum pumping requirements of the chamber, using laser drivers at a pressure of 0.1 Torr, are a modest 4.7 m3/s for D-T and 3.1 m3/s for helium. Carbon-14 activation in the blanket is insignificant. We conclude that the Cascade concept offers an attractive option for a safe and efficient inertial fusion reaction chamber.