ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
John H. Pitts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 967-972
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22984
Articles are hosted by Taylor and Francis Online.
The Cascade concept uses the high-temperature (1200 K) potential of a solid Li2O pebble blanket in conjunction with centrifugal action to produce a safe and highly efficient (up to 55%) reaction chamber for commercial power production. One option using a 25-mm-thick steel wall is shown to have low primary stresses of 22 MPa, which when coupled with a secondary thermal stress of 132 MPa, satisfies the intent and methodology for an ASME-designed vessel. A high tritium breeding ratio of 1.35 results from direct exposure of the Li2O blanket to the fusion reactions. Vacuum pumping requirements of the chamber, using laser drivers at a pressure of 0.1 Torr, are a modest 4.7 m3/s for D-T and 3.1 m3/s for helium. Carbon-14 activation in the blanket is insignificant. We conclude that the Cascade concept offers an attractive option for a safe and efficient inertial fusion reaction chamber.