ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R.R. Peterson, G.A. Moses
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 860-865
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22968
Articles are hosted by Taylor and Francis Online.
Molecular nitrogen is a possible choice for the target chamber gas in the light ion beam driven target development facility. The response of a nitrogen target chamber gas to fusion target explosions is considered. Targets with yields of 200 MJ, 400 MJ and 800 MJ are considered for a target chamber 3 m in radius and 6 m high which is filled with nitrogen gas at a density of 7.07 × 1017 molecules/cm3. The soft x-rays and ions from the explosion of these targets are stopped in short distances in this gas and create a hot spherical fireball in the center of the target chamber. Heat fluxes and shock pressures on the target chamber first walls due to these fireballs are presented and nitrogen is shown to be an acceptable cavity gas from the point of view of first wall loading.