ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. Pelloni, E.T. Chenga)
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 841-847
Neutronics and Shielding | doi.org/10.13182/FST83-A22965
Articles are hosted by Taylor and Francis Online.
The U.S. Fusion Engineering Device (FED) was used as a basis to investigate the uncertainties of several neutronics performance parameters that arise due to nuclear data uncertainties. The neutron flux distribution was calculated using the discrete-ordinates transport code ANISN. Nuclear data considered were from the VITAMIN-C (DLC-41) library. Atomic displacement rate in the TF coil copper stabilizer, nuclear heating in the epoxybased insulation material and TF coil, and energy multiplication were estimated. The cross section sensitivity study was performed using the sensitivity analysis code SWANLAKE. It shows that the copper atomic displacement rate in the inboard TF coil is known within ± 24 %. The nuclear heating in the inboard insulation material and TF coil are known within ± 21 % and ± 12.5 %, respectively. The uncertainties are primarily due to the iron inelastic scattering cross sections in the 14 MeV energy range.