ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
G. R. Longhurst, G. A. Deis, P. Y. Hsu, L. G. Miller, R. A. Causey
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 681-686
Tritium | doi.org/10.13182/FST83-A22938
Articles are hosted by Taylor and Francis Online.
Experimental evidence collected by several researchers suggests that gamma radiation may enhance the release of tritium from structural materials in fusion reactors. If so, this may reduce inventories and, in first walls, it may reduce permeation rates. The release process is not well understood, but it appears to involve Compton scattering of photons by electrons of the host material. The excited electrons then interact with binding potential fields to effect the release of bound tritium atoms. This process seems to be fairly efficient in nonmetals where it may result in enhanced diffusion, but it should be less important than thermal processes in metals. Experiments were conducted in the gamma irradiation facility of the Advanced Test Reactor at the Idaho National Engineering Laboratory to determine whether gamma radiation has an appreciable effect on the normal permeation of tritium through stainless steel. Low concentrations of HT were allowed to diffuse through a 0.071-cm-thick tube of 316 stainless steel, heated between 590 and 733 K. Gamma irradiation intensities were varied from 1.3 to 155 C/kgh (5 × 103 to 6 × 105 R/h). Ion chamber detectors were used to measure tritium concentrations on both sides of the tube. It was found that in the presence of excess H2, the higher gamma irradiation intensity exhibited slightly higher permeation rates of tritium. When the walls of the permeation tube and the HT were highly oxidized, the permeation rates were much more scattered, and the gamma irradiation seemed to have no observable effect. It was concluded that the effect of gamma radiation on tritium permeation through stainless steel in a fusion reactor environment should be small. However, the relative ease with which tritium from HTO was seen to permeate the material raises questions regarding tritium management in breeder blankets.