ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
S. K. Combs, S. L. Milora, C. A. Foster, D. D. Schuresko, J. T. Hogan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 666-674
Plasma Heating, Impurity Control, and Fueling | doi.org/10.13182/FST83-A22936
Articles are hosted by Taylor and Francis Online.
Pellet injectors that produce and accelerate frozen hydrogen isotope pellets are being developed at Oak Ridge National Laboratory (ORNL) for fueling of present and future plasma fusion devices. The development has focused primarily on two types of injectors: (1) gas guns, which utilize a pneumatic approach to accelerate pellets in a barrel with compressed helium or hydrogen propellant, and (2) centrifuge-type injectors, in which pellets are accelerated by centrifugal forces in a high-speed rotating track. In a single-pellet pneumatic injector, pellet speeds up to 1.4 km/s have been achieved. Three multipellet injection systems (ORNL four-pellet pneumatic design) are now functional, one each on the Poloidal Divertor Experiment (PDX), Alcator-C, and the Impurity Study Experiment (ISX-B). Currently, two repetitive devices (one of each injector type) are in operation to demonstrate steady-state fueling systems in the reactor-relevant parameter ranges of 1-km/s pellet velocity, variable pellet sizes up to 2 mm, and feed rates up to 10–40 pellets/s. The injector designs are described and operating characteristics discussed.