ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
William S. Cooper
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 632-641
Plasma Heating, Impurity Control, and Fueling | doi.org/10.13182/FST83-A22932
Articles are hosted by Taylor and Francis Online.
Negative-ion-based neutral beam systems can perform multiple functions for fusion reactors, such as heating, current drive in tokamak reactors, and establishing and maintaining potential barriers in tandem mirror reactors. Practical systems operating continuously at the 200 keV, 1 MW level can be built using present-day technology. Ion sources have been demonstrated that produce D− beams with <5% electron content, and that operate at linear current densities that are within a factor of 2 of what conservatively designed accelerator/transport structures can handle. Concepts are in hand for transporting the negative ion beam through a neutron maze before neutralization, thus permitting a radiation-hardened beamline. With an advanced laser photoneutralizer, overall system power efficiencies of 70% should be possible. A national program is being planned to achieve the goal of application of 475 keV systems on a mirror ETR in 1994.