ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
R.W. Conn, N.M. Ghoniem, S.P. Grotz, F. Najmabadi, K. Taghavi, M.Z. Youssef
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 615-622
Fusion System Studies | doi.org/10.13182/FST83-A22930
Articles are hosted by Taylor and Francis Online.
With the maturity of conceptual fusion reactor designs it is important to develop comprehensive scenarios for the startup and shutdown of fusion plants and to investigate physics and engineering requirements and design constraints and their implications. We then focus on the impact of such considerations on the operation of tandem mirror fusion reactors (TMR's). Brief examples from both the fission and conventional power industries are discussed. TMR plant operation is divided into an initial commissioning phase and four subsequent generic phases: (1) Phase IA: cold shutdown; (2) Phase IB: hot shutdown; (3) Phase II: system testing, plasma startup and standby power operation; (4) Phase III: staged power operation; and (5) Phase IV: rated power operation. Power ascention through these phases is explained in terms of the operation of two major systems: (1) the plasma technology and support system, and (2) the heat transport system. Physics and engineering constraints, subsystem interactions, and design implications are discussed throughout the paper using the Mirror Advanced Reactor Study (MARS) as the specific example.