ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
R.W. Conn, N.M. Ghoniem, S.P. Grotz, F. Najmabadi, K. Taghavi, M.Z. Youssef
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 615-622
Fusion System Studies | doi.org/10.13182/FST83-A22930
Articles are hosted by Taylor and Francis Online.
With the maturity of conceptual fusion reactor designs it is important to develop comprehensive scenarios for the startup and shutdown of fusion plants and to investigate physics and engineering requirements and design constraints and their implications. We then focus on the impact of such considerations on the operation of tandem mirror fusion reactors (TMR's). Brief examples from both the fission and conventional power industries are discussed. TMR plant operation is divided into an initial commissioning phase and four subsequent generic phases: (1) Phase IA: cold shutdown; (2) Phase IB: hot shutdown; (3) Phase II: system testing, plasma startup and standby power operation; (4) Phase III: staged power operation; and (5) Phase IV: rated power operation. Power ascention through these phases is explained in terms of the operation of two major systems: (1) the plasma technology and support system, and (2) the heat transport system. Physics and engineering constraints, subsystem interactions, and design implications are discussed throughout the paper using the Mirror Advanced Reactor Study (MARS) as the specific example.